Tag: reflection of waves

Questions Related to reflection of waves

The frequency of A note is $4$ times that of B note. The energies of two notes are equal. The amplitude of B note as compared to that of A note will be:

  1. double

  2. equal

  3. four times

  4. eight times


Correct Option: A
Explanation:

$E$ is for energy, $A$ for amplitude and $f $ for frequency.

As per the problem $E _{A} = E _{B}$
Hence, $f _{A} \times A _{A}^{2} = f _{B} \times A _B^2$
 $4f _{B} \times A _{A}^{2} = f _{B} \times A _B^2$
Hence, $2A _A = A _B $

A string vibrates in 5 segment to a frequency of 480 Hz. The frequency that will cause it to vibrate in 2 segments will be

  1. 96 Hz

  2. 192 Hz

  3. 1200 Hz

  4. 2400 Hz


Correct Option: B
Explanation:

5 segments implies $\lambda = \dfrac{2}{5}l$
$\nu = \dfrac{v}{\lambda} = \dfrac{5v}{2l} = 480Hz$
If the string is in 2 segments.
$\lambda = l$
$\nu = \dfrac{v}{\lambda} = \dfrac{2}{5} \dfrac{5v}{2l} = \dfrac{2}{5} 480 = 192Hz$
Hence option B is correct.

The vibrating body while playing a violin is ___________.

  1. wire

  2. the box of the violin

  3. both wire and box

  4. only air


Correct Option: C

If you set up the seven overtone on a string fixed at both ends, how many nodes and antinodes are set up in it?

  1. $6, 5$

  2. $5, 4$

  3. $4, 3$

  4. $3, 2$


Correct Option: C
Explanation:

Third mode of vibration or second overtone has three loops.
Its consist of $4$ nodes and $3$ antinodes.

A pipe of length $l _1$ closed at one end is kept in a chamber of gas density $1$. A second pipe open at both ends is placed in the second chamber of gas density $2$. The compressibility of both the gases is equal.Calculate the length of the second pipe if the frequency of the first overtone in both the cases is equal.

  1. $\displaystyle \dfrac{4}{3}l _{1}\sqrt{\dfrac{\mathrm{p} _{2}}{\mathrm{p} _{1}}}$

  2. $\displaystyle \dfrac{4}{3}l _{1}\sqrt{\dfrac{\mathrm{p} _{1}}{\mathrm{p} _{2}}}$

  3. $l _{1}\sqrt{\dfrac{\mathrm{p} _{2}}{\mathrm{p} _{1}}}$

  4. $l _{1}\sqrt{\dfrac{\mathrm{p} _{1}}{\mathrm{p} _{2}}}$


Correct Option: B
Explanation:

$l _{1}=\displaystyle \dfrac{3}{4}\dfrac{\mathrm{v} _{1}}{\mathrm{f} _{1}}$ , $l _{2}=\displaystyle \dfrac{\mathrm{v} _{2}}{\mathrm{f} _{2}}$

$\dfrac{3\mathrm{v} _{1}}{4l _{1}}=\dfrac{\mathrm{v} _{2}}{l _{2}}$

$l _{2}=\displaystyle \dfrac{4l _{1}\mathrm{v} _{2}}{3\mathrm{v} _{1}}=\dfrac{4l _{1}}{3}\sqrt{\dfrac{\mathrm{p} _{1}}{\mathrm{p} _{2}}}$

A steel wire of mass $4.0\ g$ and length $80\ cm$ is fixed at the two ends. The tension in the wire is $50\ N$. The wavelength of the fourth harmonic of the fundamental will be

  1. $80\ cm$

  2. $60\ cm$

  3. $40\ cm$

  4. $20\ cm$


Correct Option: C
Explanation:

$m=$ mass per unit length

$=\cfrac { 4\times { 10 }^{ -3 } }{ 80\times { 10 }^{ -2 } } =0.005\quad Kg/m$

given $T=50 N$

$L=80 cm=0.8m$

$\therefore v=\sqrt { \cfrac { T }{ m }  } =\sqrt { \cfrac { 50 }{ 0.005 }  } =100m/sec$


Fundamental frequency 

${ f } _{ 0 }=\cfrac { 1 }{ 2L } \sqrt { \cfrac { T }{ m }  } \\ =\cfrac { 1 }{ 2\times 0.8 } \sqrt { \cfrac { 50 }{ 0.005 }  } \\ =625\quad Hz$


$\therefore { f } _{ 4 }$ Frequency of fourth harmonic 

$4{ f } _{ 0 }=4\times 62.5=250\quad Hz$

As we know

${ v } _{ 4 }={ f } _{ 4 }{ \lambda  } _{ 4 }\\ \therefore { \lambda  } _{ 4 }=\cfrac { { v } _{ 4 } }{ { f } _{ 4 } } =\cfrac { 100 }{ 250 } \\ =0.4m\quad \\ =40 cm$

The wave-function for a certain standing wave on a string fixed at both ends is $y\left( x,t \right) =0.5\sin { \left( 0.025\pi x \right)  } \cos { 500\ t } $ where $x$ and $y$ are in centimeters and t is in seconds. The shortest possible length of the string is: 

  1. $126\ cm$

  2. $160\ cm$

  3. $40\ cm$

  4. $80\ cm$


Correct Option: C
Explanation:

For the shortest possible length, it should be allowing fundamental frequency resonance.

In fundamental frequency
$L=\dfrac { \lambda  }{ 2 } \quad \quad \quad \quad \left( \because K=\dfrac { 2\pi  }{ \lambda  }  \right) $
$=\dfrac { 2\pi /K }{ 2 } =\dfrac { \pi  }{ K } $
from $y=0.5\sin\left( 0.025\pi x \right) \cos\left( 500t \right) $
$K=0.025\pi \quad \quad \quad (on\quad comparing\quad with\quad y=A\sin\left( Kx \right) \cos\left( wt \right) )$
$\therefore \quad L=\dfrac { \pi  }{ 0.025\pi  } =\dfrac { 1000 }{ 25 } $
$\left[ L=40cm \right] $

Hence Option (C) is correct.

The second overtone of an open pipe has the same frequency as the first overtone of a closed pipe 2 m long. The length of the open pipe is

  1. 8 m

  2. 4 m

  3. 2 m

  4. 1 m


Correct Option: B
Explanation:

$l _0=$ length of organ pipe (open)

$l _c=$ length of close organ pipe
frequency of open pipe$=\cfrac{3V}{2l _0}$
frequency of close pipe $=\cfrac{3V}{2l _c}$
$\therefore \cfrac{3V}{2l _0}=\cfrac{3V}{4l _c}\2l _0=4l _c\2\times2m=4m$
B is the correct option.

A guitar string is $90 cm$ long and has a fundamental frequency of $124 Hz$. To produce a fundamental frequency of $186 Hz$, the guitar should be pressed at ?

  1. $60 cm$

  2. $30 cm$

  3. $20 cm$

  4. $ 10 cm$


Correct Option: A
Explanation:

Here, $L _1 = 90 cm, \upsilon _1 = 124 Hz, \upsilon _2 = 186 Hz, L _2=?$

According to the law of length, $\upsilon _2L _2 = \upsilon _1L _1$

$\therefore \upsilon _2= \dfrac{\upsilon _1L _1}{\upsilon _2} = \dfrac{124 \times 90}{186} = 60 cm$