Tag: mathematics and statistics

Questions Related to mathematics and statistics

A sum of money invested at compound interest amount in $3$ years to Rs. $2400$ and in $4$ years to Rs. $2520$. The interest rate per annum is 

  1. $5 \%$

  2. $6 \%$

  3. $10 \%$

  4. $12 \%$


Correct Option: A
Explanation:

Let the sum of money invested be Rs. $x$ and interest rate per annum $= r\%$
Then $\displaystyle x\left ( 1+\frac{r}{100} \right )^{3}=$ Rs. $2400$........(i)
and $\displaystyle x\left ( 1+\frac{r}{100} \right )^{4}=$ Rs. $2520$........(ii)
Dividing equation (ii) by (i), we get
$\displaystyle \left ( 1+\frac{r}{100} \right )=\frac{2520}{2400}$

$\Rightarrow \dfrac{r}{100}=\dfrac{2520-2400}{2400}=\dfrac{120}{2400}$
$\Rightarrow r=\dfrac{1}{20}\times 100=5\%$ p.a.

Sanju puts equal amount of money one at $10\%$ per annum compound interest payable half yearly and the second at a certain rate percent annum compound interest payable yearly. If he gets equal amounts after $3$ years what is the value of the second rate percent?

  1. $\displaystyle 10\frac{1}{4}$ $\%$

  2. $10\%$

  3. $\displaystyle 9\frac{1}{2}$ $\%$

  4. $\displaystyle 8\frac{1}{4}$ $\%$


Correct Option: A
Explanation:

Let the amount $=x$ in Rs .

In the first case, the payment is made half yearly $@10\%$.
So the number of time in 3yrs=$3\div \dfrac { 1 }{ 2 } =6$ and

the rate $=$ $10 p.c.\div 2=5$ p.c.
So, in the firs case, the amount after $6$ time slots @ $5\%$ is
Principal $={ \left( 1+rate \right)  }^{ time }$
$ =x{ \left( 1+\dfrac { 5 }{ 100 }  \right)  }^{ 6 }$.
In the second case, the time $=3$ yrs,  
The principal $=x$ and let the rate $=y\%$ p.a.

So, the amount after $3$ yrs @ $y\%$
$=$ $x{ \left( 1+\dfrac { y }{ 100 }  \right)  }^{ 3 }$.
$\therefore $ By the given condition, we have
$=x{ \left( 1+\dfrac { y }{ 100 }  \right)  }^{ 3 }=x{ \left( 1+\dfrac { 5 }{ 100 }  \right)  }^{ 6 }\ \Rightarrow { \left( 1+\dfrac { y }{ 100 }  \right)  }^{ 3 }={ \left{ { { \left( 1+\dfrac { 5 }{ 100 }  \right)  } }^{ 2 } \right}  }^{ 3 }\ \Rightarrow { \left( 1+\dfrac { y }{ 100 }  \right)  }={ { \left( 1+\dfrac { 5 }{ 100 }  \right)  } }^{ 2 }=\dfrac { 441 }{ 400 } \ \Rightarrow \dfrac { y }{ 100 } =\dfrac { 441 }{ 400 } -1=\dfrac { 41 }{ 400 } \ \Rightarrow y=\dfrac { 41 }{ 4 } p.c.=10\dfrac { 1 }{ 4 } p.c..$.
So, the second rate $=$ $10\dfrac { 1 }{ 4 }$ p.c..

Calculate the amount and the compound interest on Rs. $12,000$ in $3$ years when the rates of interest for successive years are $8\%$, $10\%$ and $15\%$ respectively. 

  1. Rs.$4294.40$

  2. Rs.$3634.40$

  3. Rs.$5394.40$

  4. None of these


Correct Option: D
Explanation:
Sum$=Rs.12000$
Time$=3$ years
Rate of interest$=8\%,10\%,15\%$
Required amount, A = $\displaystyle P\left( 1+\frac { { r } _{ 1 } }{ 100 }  \right) \left( 1+\frac { { r } _{ 2 } }{ 100 }  \right) \left( 1+\frac { { r } _{ 3 } }{ 100 }  \right) $
$\displaystyle \Rightarrow \quad A=Rs.12000\left( 1+\frac { 8 }{ 100 }  \right) \left( 1+\frac { 10 }{ 100 }  \right) \left( 1+\frac { 15 }{ 100 }  \right) $
$\displaystyle \Rightarrow 12000\times \frac{108}{100}\times \frac{110}{100}\times \frac{115}{100}$
$\displaystyle \Rightarrow Rs.\quad 16394.40$
$\displaystyle C.I.=Rs.16394.40-Rs.12000=Rs.4394.40$

What sum will amount to Rs. $6,593.40$ in $2$ years C.I., if the rates are $10$ per cent and $11$ per cent for the successive years?

  1. $5000$

  2. $5600$

  3. $5400$

  4. $6000$


Correct Option: C
Explanation:

$\Rightarrow$  Let rate of interest for 2 years will be $R _1=10\%$ and $R _2=11\%$.

$\Rightarrow$  $A=P\times (1+\dfrac{R _1}{100})(1+\dfrac{R _2}{100})$

$\Rightarrow$  $6593.40=P\times (1+\dfrac{10}{100})(1+\dfrac{11}{100})$

$\Rightarrow$  $6593.40=P\times \dfrac{11}{10}\times \dfrac{111}{100}$

$\Rightarrow$  $6593.40=P\times \dfrac{1221}{1000}$

$\Rightarrow$  $P=\dfrac{6593.40\times 1000}{1221}=Rs.5400$

A man lends Rs. $12,500$ at $12$% for the first year, at $15$% for the second year and at $18$% for the third year. If the rates of interest are compounded yearly; find the difference between the C.I. for the first year and the compound interest for the third year.

  1. Rs. $1,498$

  2. Rs. $1,598$

  3. Rs. $1,298$

  4. Rs. $1,398$


Correct Option: D
Explanation:
For first year
$P=12500,R=12$%, $T=1$
Interest$\cfrac { PRT }{ 100 } =1500$
Amount$=P+I=14000$
For second year previous amount will be Principle
$P=14000,R=15,T=1$
Interest'$=\cfrac { 14000\times 15\times 1 }{ 100 } =2100$
Similarly for third year
Interest''$=\cfrac { 16100\times 18\times 1 }{ 100 } =2898$
Difference between $C{ I } _{ 3 }$ & $C{ I } _{ 1 }=2898-1500=1398$

Mohit invests Rs. 8,000 for 3 years at a certain rate of interest, compounded annually. At the end of one year it amounts to Rs. 9,440. Calculate: the amount at the end of the second year.

  1. Rs. 15,729.50

  2. Rs. 13.079.80

  3. Rs. 12,367.50

  4. Rs. 11,139.20


Correct Option: D
Explanation:

$P=Rs.8000$


Amount after one year $=Rs.9440$

Interest for 1 year$=9440-8000=Rs.1440$

let rate of interest $=R$

C.I for one year=S.I for 1 year$=\dfrac{PRT}{100}$

$\Rightarrow 1440=\dfrac{8000\times R\times 1}{100}$

$\Rightarrow R=\dfrac{1440\times 100}{8000}=18$%

For second year
$P=9440$
$R=18$%
$T=1$ year

$\therefore  Amount=P\left(1+\dfrac{R}{100} \right)^T$

$\Rightarrow 9440 \left(1+\dfrac{18}{100} \right)$

$\Rightarrow 9440\times \dfrac{118}{100}=Rs.  11139.20$

Hence Amount at the end of second year $=Rs.11139.20$

Rohit lends Rs. $50,000$ at C.I. for $3$ years. If the rate of interest for the first two years is $15$% per year and for the third year it is $16$%, calculate the sum Rohit will get at the end of the third year.

  1. Rs.$77705$

  2. Rs.$76705$

  3. Rs.$74705$

  4. Rs.$78705$


Correct Option: B
Explanation:

$\Rightarrow$  Here, $P=$Rs.$50,000,\,R _1=15\%$ and $R _2=16\%$


$\Rightarrow$  $A=P\times (1+\dfrac{R _1}{100})^2\times (1+\dfrac{R _2}{100})^1$


$\Rightarrow$  $A=50000\times (1+\dfrac{15}{100})^2\times (1+\dfrac{16}{100})^1$

$\Rightarrow$  $A=50000\times (\dfrac{23}{20})^2\times (\dfrac{29}{25})^1$

$\Rightarrow$  $A=$Rs.$76,705.$


Mohit invests Rs. 8,000 for 3 years at a certain rate of interest, compounded annually. At the end of one year it amounts to Rs. 9,440. Calculate: the interest accured in the third year.

  1. Rs. 2,005.06

  2. Rs. 2,196.06

  3. Rs. 2,207.06

  4. None of these


Correct Option: A
Explanation:

$P=Rs.8000$


Amount after one year $=Rs.9440$

Interest for 1 year$=9440-8000=Rs.1440$

let rate of interest=R

C.I for one year=S.I for 1 year$=\dfrac{PRT}{100}$

$\Rightarrow 1440=\dfrac{8000\times R\times 1}{100}$

$\Rightarrow R=\dfrac{1440\times 100}{8000}=18$%

For second year
$P=9440$
$R=18$ %
$T=1$ year

$\therefore  Amount=P \left(1+\dfrac{R}{100} \right)^T$

$\Rightarrow 9440 \left(1+\dfrac{18}{100} \right)$

$\Rightarrow 9440\times \dfrac{118}{100}=Rs.  11139.20$

Hence Amount at the end of second year $=Rs.11139.20$

For the third year
$P=Rs.11139.20$
$R=18$%
$T=1$ year

$Interest=\dfrac{11139.20\times 18\times 1}{100}=Rs. 2005.06$

Hence interest for third year $=Rs.2005.06$

Find the sum that will amount to Rs. $4,928$ in $2$ years at compound interest, if the rates for the successive years are $10$ per cent and $12$ per cent respectively.

  1. Rs. $3000$

  2. Rs. $4000$

  3. Rs. $5000$

  4. Rs. $6000$


Correct Option: B
Explanation:

Let the sum be x 

Amount after 2 year=Rs.4928
Rate=10% and 12%
Time=2 years
$Amount=P\left(1+\frac{R}{100}\right)^t$
$\Rightarrow 4928=x(1+\frac{10}{100})(1+\frac{12}{100})$
$\Rightarrow 4928=x\times \frac{110}{100}\times \frac{112}{100}$
$\Rightarrow x=\frac{4928\times 100\times 100}{110\times 112}=Rs.4000$

What sum will amount to Rs. $659340$ in $2$ years C.I., if the rates are $10$ per cent and $11$ per cent for the successive years?

  1. $540000$

  2. $550000$

  3. $560000$

  4. $570000$


Correct Option: A
Explanation:

$\Rightarrow$   Here, $A=Rs.659340,\,R _1=10\%,\,R _2=11\%$

$\Rightarrow$   $A=P(1+\dfrac{R _1}{100})^T\times (1+\dfrac{R _2}{100})^T$

$\Rightarrow$  $659340=P\times (1+\dfrac{10}{100})^1\times (1+\dfrac{11}{100})^1$

$\Rightarrow$  $659340=P\times \dfrac{11}{10}\times \dfrac{111}{100}$

$\Rightarrow$  $659340=P\times \dfrac{1221}{1000}$

$\Rightarrow$  $P=540\times 1000$

$\therefore$    $P=Rs.540000.$