Tag: business maths

Questions Related to business maths

The equation $ \displaystyle 3x^{2}-8xy-3y^{2}=0 $ and $ \displaystyle x-2y=3 $ represents the sides of a triangle which is

  1. equilateral

  2. isosceles

  3. right angled triangle

  4. none of these


Correct Option: C
Explanation:

Given equation of pair of lines $\displaystyle 3{x}^{2}-8xy-3{y}^{2}=0$,
Let $\displaystyle \frac{y}{x}=m$, we get $\displaystyle 3{m}^{2}+8m-3=0$ Let $\displaystyle {m} _{1}$ and ${m} _{2} $ are slopes of lines,we get $\displaystyle {m} _{1}\times{m} _{2}=-1$

$\displaystyle \therefore $ lines are perpendicular to each other.
Then triangle is Right angled triangle . 

The product of the perpendiculars from origin to the pair of lines $ a x ^ { 2 } + 2 h x y + b y ^ { 2 } + 2 g x + 2 f y + c = 0 $ is

  1. $

    \frac { | c | } { \sqrt { ( a + b ) ^ { 2 } + 4 h ^ { 2 } } }

    $

  2. $

    \frac { | c | } { \sqrt { ( a + b ) ^ { 2 } - 4 h ^ { 2 } } }

    $

  3. $

    \frac { | c | } { \sqrt { ( a - b ) ^ { 2 } + 4 h ^ { 2 } } }

    $

  4. $

    \frac { | c | } { \sqrt { ( a - b ) ^ { 2 } - 4 h ^ { 2 } } }

    $


Correct Option: A

If pair of lines $\displaystyle y^{2}+2hxy-9x^{2}=0$ and another pair of lines given by $\displaystyle ay^{2}+10xy+x^{2}=0$ have exactly one line common and other lines represented by them are perpendicular then

  1. a = 9; h = -4

  2. a + h = 6

  3. angle between the lines represented by first pair is $\displaystyle \frac{\pi }{4}$

  4. all of these


Correct Option: A
Explanation:

Let $ \displaystyle m _{1} $ and $ \displaystyle m _{2} $ be the slope of lines of first pair


$ \displaystyle \Rightarrow  m _{1}$ and  $ \displaystyle \Rightarrow  m _{2}$  be the slope of lines of second pair

Compairing pair of lines (y-$ \displaystyle \Rightarrow  m _{1} x $ )  (y-$ \displaystyle \Rightarrow  m _{2} x $ ) with $ \displaystyle y^{2}+2hxy-9x^{2}=0 $

and pair of lines (y-$ \displaystyle \Rightarrow  m _{1} x $ ) $ \displaystyle y+\frac{1}{m _{2}}x $ with $ \displaystyle ay^{2}+10xy+x^{2}=0 $ 

we get $ \displaystyle m _{1}=-1\, and\, m _{2}=9\Rightarrow a=9\,and\, h=-4 $

Two mutually perpendicular straight lines are drawn from the origin to form an isosceles triangle with the straight line $\displaystyle x\cos \alpha +y\sin \alpha -p=0$. Then the area of this triangle is

  1. independent of $\displaystyle \alpha$

  2. independent of p

  3. independent of both $\displaystyle \alpha$ and p

  4. a function of $\displaystyle \alpha$ and p


Correct Option: A
Explanation:

Two mutually perpendicular lines drawn from origin i.e X-axis and Y-axis 

$y=0$ and $x=0$
The area of triangle $=\dfrac{1}{2}\times x \times y$

Two of the lines represented by $x^{3}-6x^{2}y+3xy^{2}+dy^{3}=0$ are perpendicular for

  1. all real values of $d$

  2. two real values of $d$

  3. three real values of $d$

  4. no real value of $d$


Correct Option: B
Explanation:

Let $m _{ 1 },{ m } _{ 2 },{ m } _{ 3 }$ be the slopes of the three lines represnted by the given equation such that ${ m } _{ 1 }{ m } _{ 2 }=-1$


We have $\displaystyle m _{ 1 }{ m } _{ 2 }{ m } _{ 3 }=-\frac { 1 }{ d } $ so that 

$\displaystyle { m } _{ 3 }=\frac { 1 }{ d } $

Since $y={ m } _{ 3 }x\Rightarrow x=dy$ satisfies the given equation, we get

${ d }^{ 3 }-6{ d }^{ 2 }+3d+d=0\Rightarrow d\left( { d }^{ 2 }-6d+4 \right) =0$

If $d=0,$ the given equation represents the line $x=0$ and $x^2-6xy+3y^2=0$ which are not perpendicular

$\therefore d\neq 0$ and $\displaystyle d^2-6d+4=0\Rightarrow d=\frac { 6\pm \sqrt { 36-16 }  }{ 2 } =3\pm \sqrt { 5 } $

which gives two real values of $d$

The pair of lines represented by $3ax^{2}+5xy+(a^{2}-2)y^{2}=0$ are perpendicular to each other for 

  1. two values of $a$

  2. for all values of $a$

  3. for one value of $a$

  4. for no value of $a$


Correct Option: A
Explanation:

$3ax^2+5xy+(a^2-2)y^2=0$   are perpendicular to each other


$\therefore$ coefficient of $x^2+ $coefficient of $y^2=0$

$\Rightarrow 3a+a^2-2=0$

$\Rightarrow a^2+3a-2=0$


$\Rightarrow a=\dfrac{-3\pm\sqrt{9+8}}{2}$

so $a=\dfrac{-3+\sqrt{17}}{2}$ and $a=\dfrac{-3-\sqrt{17}}{2}$

Let $\Delta$ PQR be a right angled isoceles triangle which is right angled at $P(2,1)$. lf the equation of the line OR is $2x+y=3$, then the equation representing the pair of lines PQ and PR is 

  1. $3x^{2}-3y^{2}+8xy+20x+10y+25=0$

  2. $3x^{2}-3y^{2}+8xy-20x-10y+25=0$

  3. $3x^{2}-3y^{2}+8xy-10x+15y+20=0$

  4. $3x^{2}-3y^{2}+8xy-10x-15y+20=0$


Correct Option: B
Explanation:

Since the triangle is isosceles, and right angled at P, therefore 
$PQ=PR$
And 
$PQ$ is perpendicular to $PR$.
The the combined equation of both PQ and PR should be of the form,
$ax^{2}-ay^{2}+bxy+cx+dy+e=0$
Since they are perpendicular and the coefficients of $x^{2}$ and $y^{2}$ will be equal and opposite.
Now the point P must satisfy the equation.
From the above options, the point P (2,1) only satisfies the equation in Option B.
Hence the correct Option is B.

The triangle ABC has medians AD, BE, CF. AD lies along the line $y = x + 3$ , BE lies along the line $y = 2x + 4$, AB has length $60$ and angle $C = 90$, then the area of ABC is

  1. $400$

  2. $200$

  3. $100$

  4. $50$


Correct Option: A
Explanation:
Given line 
$y=x+3-----(1)$
$y=2x+4-----(2)$
By shiftiing centroid to origin 
Thus now equation of median are $y=x$ and $y=2x$ 
Now the coordinates of A and B can be taken as $(a,a)$ and $B(b,2b)$
Using centroif formula $C(-a-b,-a-2b)$
Length of hypotenuse $AB=60$
$AB^2=(a-b)^2+(a-2b)^2$
$3600=a^2+b^2-2ab+a^2+4b^2-4ab$
$2a^2+5b^2-6ab=3600---(3)$
Slope of line AC from point $A,C$ is $m _{AC}=\dfrac{-a-2b-a}{-a-b-a}$
$m _{AC}=\dfrac{2a+2b}{2a+b}$
Slope of line BC from point $B,C$ is $m _{BC}=\dfrac{-a-2b-2b}{-a-b-b}$
$m _{BC}=\dfrac{a+3b}{a+2b}$
Angle $C=90$ means line AC and BC are perpendicular 
Hence $m _{AC}m _{BC}=-1$
$\dfrac{2a+2b}{2a+b}\times \dfrac{a+3b}{a+2b}=-1$
$2a^2+6ab+2ab+6b^2=-2a^2-4ab-ab-2b^2$
$4a^2+8b^2+13ab=0--------(4)$
Solving both $(3)$ and $(4)$ equations we get 
$ab=-\dfrac{800}{3}$
$Area of traingle=\dfrac{3}{2}(ab)=400$

The straight line joining the origin to the other two points of intersection of the curve whose equations are $\displaystyle ax^{2}+2hxy+2gx+by^{2}=0: : and: : a'x^{2}+2h'xy+b'y^{2}+2g'x=0$ will be at right angle if

  1. $g(a' + b') - g'(a + b) = 0$

  2. $gg' = a'b' - ab$

  3. $g - g' = (a - b) (a' - b')$

  4. none of these


Correct Option: A
Explanation:
Given eq of curves 
$ax^2+2hxy+2gx+by^2=0$----(1)
$a'x^2+2h'xy+2g'x+b'y^2=0$----(2)
$1=\dfrac{a'x^2+2h'xy+b'y^2}{-2g'x}$
Putting in eq (1)
$ax^2+2hxy+2gx\left ( \dfrac{a'x^2+2h'xy+b'y^2}{-2g'x} \right )+by^2=0$
$ax^2+2hxy-g\left ( \dfrac{a'x^2+2h'xy+b'y^2}{g'} \right )+by^2=0$
$ag'x^2+2hg'xy-ga'x^2-2gh'xy-gb'y^2+bg'y^2=0$
$x^2(ag'-a'g)+y^2(bg'-b'g)+2xy(hg'-gh')=0$
Here by perpendicularlly 
$ag'-a'g+bg'-b'g=0$
$(a+b)g'-g(a'+b')=0$
$g(a'+b')-g'(a+b)=0$

Which of the following pairs of straight lines intersect at right angles ?

  1. $\displaystyle 2x^{2}=y\left ( x+2y \right ) $

  2. $\displaystyle \left ( x+y \right )^{2}=x\left ( y+3x \right )$

  3. $\displaystyle 2y\left ( x+y \right )=xy$

  4. $\displaystyle x=\pm 2y$


Correct Option: A
Explanation:

For pair of straight lines, lines are perpendicular if $a+b=0$ (where $a$ is the coefficient of $x^2$ and $b$ is the coefficient of $y^2$ )

For option A,
$\displaystyle 2x^{2}=y\left ( x+2y \right ) $
$\Rightarrow 2x^{2}-xy-2y^{2}$
Here, $a+b=0$
Hence, the pair of straight lines intersect at right angles

For Option B,
$(x+y)^{2}=x(y+3x)$
$\Rightarrow -2x^{2}+xy+y^{2}=0$
$a+b \ne 0$ 

For Option C,
 $2y(x+y)=xy$
$\Rightarrow xy+2{y}^{2}=0$
$a+b \ne 0$ 

For Option D, $y=\pm 2x$
Clearly lines are not perpendicular.